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Random cuts in binary mixtures of spheres

Annie Gervois
Service de Physique Théorique, DSM, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France

Luc Ogef and Jean-Paul Troadec
Groupe Matiere Condensée et Matériaux, UMR CNRS 6626, Université de Rennes I, F-35042 Rennes Cedex, France
(Received 8 January 2004; published 29 September)2004

Three-dimensional3D) disordered media may be studied by performing random planar cuts through the
material and trying to go back to 3D geometry from two-dimensional information. We have studied from this
point of view numerical packings of spheres of two sizes for which the radii of the spheres and the composition
of the mixtures have been obtained from the cuts. We have also studied the froths generated by the related
Laguerre—\Voronoi tessellation of the packings, and their cuts. Stereological relations, in this specific frame, are
derived in both cases.
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I. INTRODUCTION combine the two approaches, at least in numerical packings

Disordered three-dimension@D) systems are difficult to  ©f SPheres, it is also possible to generate a froth from a
handle and—except in very special cases—it is very difficul?@cKing by performing the Voronaresp. Laguerre, or radi-

to perform a precise analysis. A possible approach consists ) tessellation4] of the space in the monodispersesp.
performing two-dimensiona2D) random (stereologica)l polydispersg case, most geometrical features of the grains

cuts[1] through the material in order to get statistical infor- P€iNg analyzed together with the corresponding ones for the

mations on the 3D system from the 2D statistics. Some C|a§_elated tessellation. The main difference between a natural

sical stereological relations exist such as volume, area, nunjtoth and a froth obtained by tessellation of a sphere packing
ber per unit volume or area between 3D and 2D structures!S due to steric exclusion: The smallest cell for a disk assem-

Two peculiar classes of materials are often considered f dly is _thehsmalles;cj_grain of the pa_crlfing. Su_chla stuqu was
which more can be done because of the relative “simplicitydon€ In the monodisperse ca$g with numerical packings

of the shapes involved. Firstunconsolidated granular of spheres—the only parameter being the packing fraction.
d3e5|des checking the validity of global conservation laws, it

nonoverlapping grains; cuts are disordered assemblies of ugas possible to compare the polydisperse 2D system of sec-

. i o e T tion disks to an ordinary random disk assembly with the
equal disks which distribution is known. Secorimths (or same packing fraction and the same size distribution. Both

fogms) e.g., biological cells, geological Ia}yers, Soap asseMpapave very closely. Moreover, as the section disk distribu-
blies, .. where the full space may be considered as filled withyjo, js naturally peaked in a small range of values, the radical
polyhedral convex cells; cuts fill the plane by convex po-tessellation of the two assemblies verifies most statistical
lygonal cells which metric and topological features may beproperties of monodisperse random disk assemblies, both on

studied easily. _ _ the topological and the metric levels.
~ Already some practical studies were done to correlate 2D Byt even if the structure of two-size mixtures of spheres
informations to 3D structures: has also been studied, mostly on packings built numerically

(1) One can also notice the experimental study by Sandfor example[6]), the detailed analysis of the correlation
ers[2] on natural opals. The samples consist in silica spheregetween 3D information and 2D measurements is not yet
of two sizes(0.36 and 0.2Jum diamatey and they present done completely. A lot of new tools, such as x-ray tomogra-
side by side ordered and disordered zones which differ by thshy, MRL and confocal microscope, can deliver some kinds
composition and the packing fraction, as shown by electroyf 3D descriptions which can be analyzed also as a set of
microscopy of fracture surfaceshe fractures pass through consecutive 2D dimensional slices. To get some informations
the spheres and so exhibit planar sections of the spheres from 2D images is not so easy without any a priori informa-

(2) Sonnevilleet al. [3] have obtained a biliquid foam by tjon, as we can see in the comparison between the real pack-
extraction of the continuous phase of an oil-in-water emul-ing and one 2D cut in Fig. 1.
sion through centrifugation; observation of the foam by The aim of this paper is to begin an analysis for two-size
freeze fracture electron microscopy shows that the oil dropmixtures of spheres generated numerically, similar to the one
lets have deformed into polyhedral cells. for monodisperse packing$]. The final aim is to get 3D

As shown by that latter experiment, the studies of grainnformation for the initial packing from 2D statistical prop-
assemblies and foams are not too far from each other. Tgrties of the random cut to be able to do the same in the case

of actualassemblies. Of course, binary systems may behave

very differently from monodisperse systems, and polydis-
*Electronic address: luc.oger@univ-rennesl.fr perse systems often interpolate between these two extreme
"Electronic address: jean-paul.troadec@univ-rennes1.fr situations. Other parameters enter the discussion: The size
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Hx/Hy, (1)

whereHy andH,, denote the tangent diamef@r orthogonal
projection lengthof the object and of the vessel relatively to
the direction of the sectioning plane. When several sections
are performed with random distinct orientatiom$, (resp.

Hy) is the average projection length. For instance, if the ves-
selV is a cube with edge length, H,,=L when the cuts are
done parallely to one of the sides of the cube datg
=3L/2 when all orientations are equally allowed. If the ob-
ject X is a sphere of radiuR, Hy=2R. For a polyhedronty
reads[1,7]

1
Hx=52|i(w—0i)/2, (2

where the sum runs on all edges of the polyhedtpis, the
length of theith edge, andj, is the inner angle of the dihe-
dron with edgd; in the case of a regular polyhedron with
faces,n edges of length per face and occurenceat each
vertex, it simplifies to

® - nfl
93 Hy = 8 cos Y cog #/\)/sin(2a/n)], (3)
&y P = ar
) which in the case of tessellation® =3 and n=n(f)=6
O —12/f) reduces further t§1]
e 3(f-2) .
;E)JQ Hy = si-2l cos1/2 sin2x/n)]. (4)
O 4
il
“C) , For a planar polygon, expressio®) becomes
SO Hy = P/4, (5)
Copee® (g whereP is the perimeter of the polygon.
§7 : Stereological conservation laws exigl], when going

from 3D to 2D cuts, linking the 3D objects in a voluriveto

their 2D sections on a surfagdewhich may be rewritten as:
(1) Conservation of the packing fraction: The occupied
FIG. 1. (@) 3D binary mixture of spheres with 80% of small Volume per unit volumeé/y, (or packing fractione) is equal

spheres and a size ratio equal to 185.2D cut of this packing with  t0 the occupied area per unit ardg in the section(Vy=A,

its radical tesellation, the gray disks correspond to the cuts of thén classical notations

large spheres. (2) Conservation of the surface per unit voludg more

preciselywmA,=4P,, whereP, is the perimeter per unit area

ratio and the numerical fraction of each species. In Sec. 1IN the section, and ,

we recall general stereological relations and their application (3) Conservation of the length per unit volume By

to the special cases of convex polyhedra fillings and o__zQA’ \(vhereQA is the num_ber of traces in the section of the
spheres assemblies. In Sec. Ill, we describe briefly the buildi"eS With lengthPy per unit volume.
ing process for our binary packings of spheres and for the
related Laguerre cell assemblies. In Secs. IV and V, we give
numerical results for the 2D random cuts and check the ste-
reological relations coined in Sec. Il. In the last part of Sec. We start with a binary mixture dfl spheres in a vessel of
V and in the conclusion, we discuss the method for goingrolume Vi, with radii R, i=1,2 (R;<Ry), in numerical
upward from 2D to 3D statistics in actual situations. proportionsn; (ny+n,=1). The packing fractiorp is the frac-

tion of occupied volume

B. Case of assemblies of spheres

Il. STEREOLOGICAL RELATIONS

. 47N
A. Generalities o=~ [nR+ MRV (6)

The probability for a 3D objecK embedded in a vess¥|
(a cube in our sampleso be sectioned whe¥ is sectioned The sections are disordered polydisperse disk assemblies.
is [1] The numbem; of disks issued from spheres of spediés a

031112-2



RANDOM CUTS IN BINARY MIXTURES OF SPHERES PHYSICAL REVIEW EO, 031112(2004

section isN; =Nn; 2R/H,, whereH,, is mean tangent diam- V;,A;,P;, and globally(V)=2n,V; and similarly for(A) and
eter of the vessel andRp is the tangent diameter of the (P). We need also the average value of the perimejeof a
spheres of type. The total number of disks in the section is face (ij).

N3 +N,=N(ny 2Ry +n; 2Ro)/Hy and the disks issued from  The 2D cut of the 3D tessellation is a tessellation of the
spheres of specidsare in proportionsy, plane by convex polygons of 2 species. With obvious nota-
* tions, the corresponding 2D quantities are:

0} = R/MIR; + MRy, (7 ponding == 4
. L 1) Numerical fraction®y; of cells generated by a 3D
i.e., the proportion in the cutdoes notdepend on the pack- i-c<(ell) ' 9 y
ing fraction. The conservation laws are contained in the den- (2) Coordination number, i.e., average number of neigh-

sity distributionP"(r) of sectional disk radii: boring polygonsz, with STi7 =6 (Euler’s identity,

nr ner (3) Fraction of neighborsij), sayf;,
* 1 2
PI="F5— e O0<r<R (4) Average numbeim(n) (resp.m(n)) of edges of the
R R*l_r RoVRp =t ()  cells neighbor of a 2Di—cell (resp. undifferentiated cgll
P () = n,r R <1 <R Withnedggs, and o
Rz\"m’ 1 2 (5) metric average quantities;, p; for the average area

and perimeter of cells of each species, day (p) for all
Relation(8) is a simple generalization of the ofif relative  cells, ..
to a monodisperse packing. Alternatively, the fracthdiir)

of disks with radius less thanis From the conservation law&ec. Il A), we derive some re-

lations for binary mixtures:
Yy —1 B2 2/p. P2 2 . ~
N'(r)=1-nVRI—r/R - mVR;-1/R;, 0<r <Ry (1) The number of section polygony; of speciesi is
N'(r) = 1—n;\/R§—r2/R2, R, <r<R,. N;=N nH;/Hy, whereN is the number of polyedra in the

9) vessel with mean tangent diametéy andH; is the average
tangent diameter of 3B-cells. The total number of polygons
Note that repartition functiolN (r) has a cusp at=R;, with in the section isN=N(n,;H;+n,H,)/Hy, and the numerical

an infinite Slope on the left side, and a fln{’pK)SItlve) Slope proportion of p0|ygons of Speciés'n the cut is
on the right side

R 1 ﬁi:niHi/z niH;. (11
* T]
nzﬁz JR-R’ (10) (2) For each species,
which may be large ifi, (or n,) is large and/or the size ratio Vi=Ha,
close to 1. ~
The conservation relationgacking fraction and surface A = 4Hip;,
per unit volumeg, which are more general, may be directly
checked by using distributioR™(r). Of course, these formu- P =2ZH;, (12

las are easily generalized_to polydisperse systems ar_1d MaY\d for the average volume, area, and perimeter
be also extended to packings of spheres with a continuous

radius distribution. Relation&) and(8) are tested in Sec. IV. (V) =@ (mHy +noHy),

. ) m(A) = AP)(nHy + nyHy),
C. Case of polyhedric tessellations

We consider the case of two-species mixtures of convex (P)=12(nyH; + nyHy). (13

polyhedric c.ells filling space, _in humerical propqrticm The last relation is a simple check of the Euler’s identity
(n1+n2—1_), like the one resulting o_f the tessellation of AH,%, +Ti;2,=6 for the 2D mosaics.
binary mixture of spheres. We restrict to the case where an (3) Further information on the correlations between

edge is common to three cells and a vertex to four Ce”%eighbors exist. LeP

which is the generic case in tessellatigB$ The conserva-  -ommon facdij) between two cells of speciésndj. If it is

tio_n laws may be rewri_tten differenty and more pr?‘?‘se '®sectioned, it yields a common edge to two 2D section cells
lations exist. The sections are convex p(_)lygons _f||||ng _theand the number of facgsj) to be sectioned is
plane. For the 3D tessellation, the main information arises
from the distribution of neighboring cells. We shall use the
classical notations for the partial and total coordination num-
bersf; (f)((f)=Zn;f;), the fractiont; of faces common to a .
i—cell and aj—cell, the average numben(f) (resp.m(f)) of whereF:N(f>_/2 is the total number of faceé&) the average
faces of the cells neighbor ofiacell (resp. undifferentiated Number of neighbours of a cel;;=P;;/4 the tangent diam-
cell) with f faces, and average metric quantities, such as theter for the faceij) [see Eq.5)] andE=3N the number of
average cell volume, area, and perimeter per speciesdges in the section. Whence,

ij denote the average perimeter of a

P. ~
Ftinij/HV: Ft_IL = Ef

ij 4HV ijs (14)
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T _ TABLE I. Fraction of empty cells witm sides for both species
tij =t Pij/E ti; Py, (15 (=2, 1,205, Py P
or
n Species 1 Species 2
- tii P
= (o, (16) 3 1 1
24(n{H4 + n,H
Ay +noHy) 4 0.613 0.593
and 5 0.207 0.239
6 0.044 0.045
fy =24(n;Hy + n,H t;i Pi . 17
(=24, + o) [ S 4P an 0,008 0,000
These formulas are easily extended to polydisperse asserg- 0.000 0.001

blies of polyhedra. Relationd1)—(13) and(15) are tested in
subsection V C.

[8,13 and their regularity increases with the packing frac-

I1l. NUMERICAL METHODS AND PACKINGS tion. It is not so simple in binary cases as the cells are al-
i ) . ready very differentiated at medium size ratlo=1.5); the
We first build our binary assembly of spheres, then theyage” cells are probably more regular than the “small”
related 3D-Laguerrgradica) tessellation and finally perform a0

a random planar cut of the tessellation.

C. Random cuts

A. Sphere assembly Once the tessellation is built, we perform a series of at

We start with two sizes of spheres, with radii i=1,2  least 40 random sections through each packing, so that the
and R;<R,, in numerical proportions;, n;+n,=1. Except statistical study of the 2D sections is carried out on about
for specific purposes, we shall consider spheres with siz25-30 000 polygonal cells.
ratio k=R,/R;=1.5. The numerical fractiom; of small Note that some cells are empty as the plane may cut the
spheres runs from 0.10 to 0.95. We build disordered packingsell butnotthe sphere. In the samples of this pa@mmpact
of 16 000 spheres using several types of binary hard corassemblies approximately 75% of the 2D cells are occu-
algorithms: Random sequential adsorpti&8A) [9], Powell  pied, with more success for the large ofisisecies 2as the
algorithm[10] (grains are placed successively under grayity 3D cells are more regular and thus their faces are closer to
collective algorithmge.g., event-driven, Jodrey—Tof{1]), the inner sphere. This phenomenon is more accentuated
which are generalizations of those in the monodisperse casghenk=2. From Eq.(1), it is easy to check that the fraction
and are detailed ifil2]. Let us recall that high packing frac- of occupied cells of specidsis 2R;/H; and that the fraction
tions are realized using Jodrey—Tory algorithm: For the sizef full cells globally is 2n;R;+n,R,)/(n{H;+n,H>).
ratios we have used, the maximal packing fractipp In Table | is plotted the fraction of cells with sides
slightly depends om; but remains close to the maximum which are empty for both species. As expected, empty cells
value for disordered monodisperse sphere packings, have a small number of sidgm=<8); all three cells are
~0.64. The Powell algorithm generates a looser packingmpty and nearly two-thirds of the=4 cells. The proportion
(¢~0.58-0.60 and RSA yields dilute assembligisom 0to  of empty cells for eachn is nearly the same for the two
0.40 at most species.

B. Three-dimensional tessellation IV. ASSEMBLIES OF SPHERES

In the case of equal spheres, two grains are said to be We checked Eqg7) and(9) at maximal packing fraction
neighbors if their Voronoi cell have a common face and a(¢,,~0.64) and any numerical fraction; (n; running from
hierarchy in neighbors may be easily generated. The study of
the grain assembly is thus complemented with that of the 1.0
Voronoi tessellation, i.e., of a space filling foam made of
convex polyhedral cells, each cell containing one grain and - ]
one only[8]. For binary—or more generally polydisperse—
systems, a correct generalization of the Voronoi tessellation
is the Laguerrdgor radica) tessellation{4] where the bisect-
ing plane is replaced by the radical plane with the same
topological properties, same occurrence numbers, and one 0.0 L L -
cell containing one sphere and only one. We have now a 0.0 (21'5 10
two-fold froth with two kinds of grains herein. '

Note that the 3D Voronoi or radical tessellations are not FiG. 2. Plot ofn; vs the 3D numerical fraction of small grains
the most general froth because of the steric constraint. In the, for a size ratid=1.5 at maximum packing fractiop~ 0.64; ¢ :
monodisperse case, the cells are more regular than those getumerical values; the theoretical expression is given by the con-
erated for instance by a random Voronoi Poisson procestnuous line.

0.5 | E

n*
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— T
0.44 |- -
* <
T 040 o 8 o9 % 0 i
0.36 - . 1
L 1 L 1 1 1 L
00 02 04 06 08

dFI(_S. 3. t'.j Iq;tszlsvzr_skls the _pa|Ck|n|g frac.:_t'_?ﬂ Whetf‘ ”1:()"5 FIG. 5. Fit of the experimental values N (r) to the theoretical
and size ralio I%=1.5. ©: Numerical values, =. Theoretical values. expression in a “bad” case: Small size rakig1.2 and smalin;

The theoretical values are not all the same because the differerzlto_zol
building algorithms do not give exactly the same composition and
radius ratio.
sible size ratio isk=(v‘§+1)/2. We have chosen again

0.10 to 0.99, then at fixed fractiorin;=n,=0.5 and increas- -15 gnd ©=0.64 (the densest packing fraction ig
ing packing fractionp. o _ =187/81=0.67 873.). Relationg6) and(10) still hold. The

In numerical assemblies, everything is known, i.e., thesgme would probably be true for a segregated pacitarge
size I’atiOk, the numerical fraction of small Spherﬂ§ are and small grains Comp'ete'y Separateﬁhis means that so
perfectly determined. Then, the resulting 2D numerical fractar it is impossible to get information relative to the posi-
tionsn; and repartition functioM'(r) are easily compared to tional correlations in the packing with only these general
the theoretical expressions E@#) and(9). For example, we  quantities and that a finer analysis is needed. We shall go
give in Fig. 2 the variations Oﬁl with ny for k=15 atg back to this point in the discussion.

~0.64 and ?n Fig. 3, versuse fo_r n,=0.5 andk:1.§. The In an experimental study, it would probably be difficult to
agreement Is very gOOd.. In partllcular, as expectgddoes  have a statistics as good as in the numerical case. The
not depend on the packing fraction. samples may be small and only a reduced number of cuts is

It is much more interesting to consider that we have amossible. It is then interesting to study size effects with con-
actual sample and that the information only arises from thelitions close to the ones used experimentally in order to have
cuts which is the actual situation. We can determine experian idea of the reliabiliy of the results of a real experiment.
mentally the 2D repartition functioN"(r). The presence of a We have then built numerically a large packing of 16 000
unique cusp at some value ofis characteristic of a binary spheres witm,;=0.5,k=1.5, ande=0.64. Inside the packing
system. We can then try to i’ (r) by the function given by we have made smaller cubic samples of different sii€s
Eq. (9). This has been done using the Levenberg—Marquardi2, 16 and 2pmeasured as the cubic root of the number of
algorithm with parameters;, R;, andR,. As seen in Fig. 4, spheres in the samples. Fqmonoverlappingsamples were
the fit is very good. It is still better with a larger size ratio considered for sizes 10 and 12, two for size 16 and one for
(k=2) as the 2 species are drastically separated. It remainsize 20. Through each sample, we have made 40 cuts parallel
good when the size ratio is smaller, even whgns small  to its sides, choosing randomly one of the three directions
where the determination is more difficult, as seen in Fig. 5and the position of each cut. Table Ill gives the statistical
for k=1.2 andn;=0.2. results we have obtained. The largest difference between the

We can compare the final values of the parameters givemean value of the parameters of the fit and the numerical
by the fit algorithm and the numerical values characterizingvalue is less than 1% fdR, andR, and about 2% fon,. As
the 3D packing. The agreement is very gaddble II). expected, the mean square deviatiorecreases when the

The same study was performed in the case obmlered size of the sample increases. For all sizes, it is smalRfor
binary mixture, when the two species are on two shifted~3% at size 1P and even smaller foR,: the radii are
simple cubic lattices. Them;=n,=0.5 and the smallest pos- obtained with a good precision from a few cuts. It remains
large forn, and a large number of cuts is necessary to deter-
mine n, precisely.

TABLE Il. Comparison of the parameters given by the fit with
1 the numerical values of the 3D packing.

k=1.5 k=1.2
Fit Num. Fit Num.
' n, 0.2550 0.2533 0.2088 0.2048
FIG. 4. Plot of N*(r) for a size ratiok=1.5 andn;=0.25 ¢ Ry 0.2730 0.2730 0.3264 0.3287
=0.64; numerical values(¢) are fitted by the theoretical R, 0.4095 0.4095 0.3944 0.3944

expression.
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TABLE lll. Size effects for cuts parallel to the sides of the cubic o T T T
sample. Numerical valuesR;,,=0.2441, Ry,,m=0.3670, and 02| ; .
Nypun=0.4996. ¢

§ [ o] o |
Sample size— 10 12 16 20 & 01k ° -
Rysit 0.2451 0.2441 0.2439 0.2442 - © ] iy
Rosit 0.3650 0.3653 0.3661 0.3663 ool 1 1 186454 |
Nyfit 0.4893 0.5101 0.4968 0.4951 o7 n o B
OR, 0.0076 0.0042 0.0036 0.0002 o )
or, 0.0029 0.0022 0.0015 0.0006 i FIGf. II7. _Dllstrlbu:tlonw(n) of the_ nlumb:r of sides of a celk
o 0.093 0.086 0.053 0.040 1.5, full circlesn;=0.25, empty circle;=0.80.

B. Analysis of the two-dimensional cell assembly

V- RESULTS FOR THE CUT OF THE TESSELLATION In the following, we shall consider the 2D mosaics result-

As explained in the preceding section, in numerical endNd from a planar random section independently of the un-
sembles everything is known. So, all 3D and 2D quantitie!®"ying sphere packing which may just be considered as an
may be reached. We first recall briefly the 3D behavior of thdNtérmediate for building a 3D froth. It would not be possible
Laguerre tessellatiofsee[12]), then give the results for the I actual sphefe assemblies and we shall go back to this point
2D cuts and check the stereological relations of Sec. II. I the conclusion. _ o

Except when explicitly noticed, the 3D and 2D tessella- W& 90 now to the corresponding 2D quantities and check
tions have been generated from sphere assemblies for a siginilarities and differences with the 3D case.

ratio k=1.5 and maximal packing fractioip,~ 0.64). (1) The proportiorfi, of sections related to species 1 is an
increasing function oh; like n: and alwaysn1<ﬁ1.

(2) The total distribution functionr(n) for the numbem
of sides of a cell has only one peékig. 7); the same is true
Such an analysis was already performed[i?]. We for the distribution of the area of the cells.

briefly recall main statistical properties. (3) The partial coordination numbei® are increasing
B . functions of n; (Fig. 8). They satisfy the Euler’s relation
(1) Fork=1.5, the 3D cells of the two species are clearlyﬁ1~21+ﬁ2~22:6_ At the limitn,=0,%,=2=6 and conversely.

different and the distribution functions for the fractipy{f) (4) The fractiond; of common edgeij) have been plot-
ij

of -faced cells of speciasand for the _me_tric.quantitie‘di, . ted on Fig. 9 as a function of;. The behavior is qualitatively
A, andP; are clearly separated, all distributions presentingo same as for the in the 3D tessellation,

2 Both coordination numberk are inoreasing functons 1, (5) ABoaYVS empric lawfor each speciefolds and also
of ny. At the two limiting situationsn;=0 (resp.n,=0), f, . for the global analysis of the packirig. 10:
(respfy)=(f)~13.9

(3) The total number of facen(f) of the neighbors of a nm(n) = (6 —=\j)n+ . (18
f-faced cell of speciesis a linear function of (Aboav’s law
[14]). It is not true for a global analysis of the packing. This
is better put into evidence for a larger size rdti2 (Fig. 6).

(4) The average volume, area and perimatgf), A;(f),
andP;(f) for specied and at giverf are not linear functions
of f, contrary to the monodisperse case where Lewis an
Desch laws hold15,16.

A. Analysis of the three-dimensional cell assembly

(6) We have measured all metric quantities such as the
area and perimeter of each cell, the average aread pe-
rimeterp; per species and we have analyzed their distribution
function. Contrary to the 3D case, the two peaks are not

eparated. As to the areas (resp. perimeteip;) we have
hecked their dependence on the number of side$ the

8

400 —
| © i=1 L K
0 =2 7L . . 4
300~ undifferentiated « 3 .
— B 1 3y B R o * b
S 200 - W6 e —s
100 | - Lo o o ° s ]
0 1 1 M 1 N 1 1 1 1 1 1 1 1 1
0 10 20 30 00 02 04 06 08 1.0

FIG. 6. Aboav’s law holds for the two species separately, but not FIG. 8. Variation of the partial coordination numb&rswith n;
for the global analysis of the packing=2, n;=0.75). (k=1.5.
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1.0 —r—T7T—T7 1.0 — 77171
0.8 |- E 0.8 | ° 4
I 2 = 1 «*°
0.6 |- 2 i/ 1 0.6 ° ]
oal ] S °
’ __ o __ 04 o i
0.2 -— —- 02 | < .
0.0 s 1 1 L 1 1 1 A4
0.0 1 . 1 1 1 1 1 1 1
00 02 04 06 08 1.0 5 2 < s
1y n
FIG. 9. Variation of théfj; with ny (k=1.5). FIG. 11. Variation of the are@(n) of the cells withn (R;

=0.296,k=1.5,n,;=0.5).
section cells..Neither Desh[16] nor Lewis[15] laws hold
(Fig. 11). In that case, the 3D tessellation is not known, the only
information available is the set of planar disks. As seen in
Sec. IV, not much may be done directly with the set of sec-
tional disks. However, another partition of the plane may be
We have first checked on our numerical assemblies thgerformed, from the Laguerre tessellation in the seatiom
stereological relationg11)—<(15) derived in Sec. Il C. The not from the cut of the tessellatipas was already done for
agreement is pretty good even whepor n, are small and 2D binary and polydisperse assemblies of difk#]: there
the statistics poor in one species. As an example, in Table I\are less cellgabout 25% less in our compact assemblims
the theoretical and numerical values of Tyeare compared. larger cells. Their edges often coincide with the edges of the
However, going backward from 2D to 3D with the only cut of the tessellation as, when the section disk exists, the
2D information is not straightforward. First, pure individual radical axis is the trace of the radical plane in the section; on
average quantities require the knowledge of the tangent dihe other hand, non-neighboring spheres may have neighbor-
ameterH; of the 3Di-cells: from the numbeN of 3D cells  ing disks in the section and this will be the main problem
and the average numbbi of cells in a section, it is easy to when going back from 2D. to 3D. -
know the global average tangent diameteH,+n,H, and Wg denote by an asterlsk' thg quantities related to.the tes-
from i, to get back the average tangent diameter of eacﬁellatlon of the _sectlon. Qu.alltat!vely, the twq tesse_llatlons do
species, provided; is known. If not, the problem is harder not Ioolf very dlff.e'ren*t at f[St sight. For a size rake 1.5,
and only nH;, then 3D quantities such asVi, nA, topological quantitieg; andz on one hand antfj andf; on
nP;...can be reached. Note that, in the case of a binar}he_o"her are rather close; numerical differences begm_to be
sphere packing, it is possible to ggtandR separately and notlce:flble wherk~2. As for thg cut of the tessellation
then all 3D individual average quantities. The 3D coordina-AP0av's law holds for each species separatéiyt not glo-
tion numbers(f), f; require the knowledge of the average Pally); Lewis and Desch empirical laws do not.
perimeters(P), (P.) of the 3D cells which may be derived However, in spite of some common features, the two tes-

from the conservation lawgl2). However, correlations are sella’;ions are not simply numerically related and it is not
harder to get, as the re uire'the knowl,ed e of the indi- possible to derive properties of the cut of the tessellation
vidual peri?ne,tersP-- i red 9 (unknown on experimental sampjefsom the properties of

ij*

the tessellation of the cut. Moreover, the main differences
concern the distribution functions which are narrower in the
D. Open problems tessellation of the cut as can be seen, e.g., on the dispersion

C. Check of the stereological relations

Let us go now to an actual situation and more precisely let
us considean actual packingnodeled by(possibly polydis-
persé spheres.

TABLE IV. Comparison of the stereological formulation values
with the numerical values for the correlation functi&ns

ty tio o

120 —r—————F—1—1—

| ¢ i=1 . ny theory stereo. theory stereo. theory stereo.
o =2
80 - undifferentiated

- 010 0044 0044 01268 0.1256 0.8688 0.8700
. 025 0.0293 00291 02938 0.2886 0.6769 0.6823
- 040 00785 00777 04224 04197 0.4991 0.5026
] 050 0.1396 0.1396 0.4844 0.4844 0.3760 0.3760
ol v v 070 03292 03285 04981 0.4950 0.1727 0.1765

0 4 8 12 16 0.80 0.4830 04777 0.4295 0.4299 0.0875 0.0923

0.90 0.6978 0.6976 0.2785 0.2781 0.0238 0.0243

FIG. 10. Aboav’'s law holds for the two species and for theggs 0.8390 0.8395 0.1548 0.1543 0.062 0.0063
undifferentiated casé&=2, n;=0.75).

nnt(n)
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FIG. 12. Dispersion of the number of sides of the cells in the cut  F1G- 13. Average areas of the two types of cells in the cut of the
of the tessellation(7y) and in the tessellation of the cif) (k tessellation@; anday) and in the tessellation of the c(#,; anda,)

-15. (k=1.5).

of the number of sides of the cells in both cages and7,) However, in actual samples, going from 2D to 3D infor-
(Fig. 12). As to metric quantities, by construction, areas and‘naﬂon as to the shape or r_elat|ve arrangement of thg grains
perimeters are greater in the tessellation of the[ejtanda, IS NOt SO easy. Already for disordered sphere assemblies, only
are, respectively, 1.4 and 1.25 larger tRaranda, (Fig. 13)] the numerical fraction and radii of each species may be eas-
but overall, the distributions again are more peaked: Thdly reached. For convex polyhedral assemblies filling space,

dispersion of partial areaa;* is smaller nearly by a factor 2 getting individuql average quantities implies the knowledge
for k=1.5 in the tessellation of the cut. of the tangent diametet;, which is possible, but the deter-

mination of correlated quantities depends on the knowledge
of the 3D perimeter®;; of the faces of the cells which is a
more difficult problem.

We have studied binary mixtures of spheres together with In the extension to the studies of granular materials, a
the froth generated by their related Laguerre-Voronoi tesselpossibility could be the construction of the tessellation in the
lation. The cut of the tessellation is in turn a disordered 2Dcut, which can be performed on actual samples, although the
tessellation(mosaig made of two species of convex cells. correspondence with the cut of the tessellation is only partial.
We have derived the main stereological relations between th@ne may hope then to reconstruct the 3D tessellation and
3D tessellation and its 2D cut and checked their accuracy othus study the actual 3D geometrical organization. We are

VI. CONCLUSION

numerical assemblies. The agreement is very good. presently beginning this study.
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