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Three-dimensional(3D) disordered media may be studied by performing random planar cuts through the
material and trying to go back to 3D geometry from two-dimensional information. We have studied from this
point of view numerical packings of spheres of two sizes for which the radii of the spheres and the composition
of the mixtures have been obtained from the cuts. We have also studied the froths generated by the related
Laguerre–Voronoi tessellation of the packings, and their cuts. Stereological relations, in this specific frame, are
derived in both cases.
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I. INTRODUCTION

Disordered three-dimensional(3D) systems are difficult to
handle and—except in very special cases—it is very difficult
to perform a precise analysis. A possible approach consists in
performing two-dimensional(2D) random (stereological)
cuts [1] through the material in order to get statistical infor-
mations on the 3D system from the 2D statistics. Some clas-
sical stereological relations exist such as volume, area, num-
ber per unit volume or area between 3D and 2D structures.

Two peculiar classes of materials are often considered for
which more can be done because of the relative “simplicity”
of the shapes involved. First,unconsolidated granular
materials—at least when they are modeled by spherical hard
nonoverlapping grains; cuts are disordered assemblies of un-
equal disks which distribution is known. Second,froths (or
foams) e.g., biological cells, geological layers, soap assem-
blies,… where the full space may be considered as filled with
polyhedral convex cells; cuts fill the plane by convex po-
lygonal cells which metric and topological features may be
studied easily.

Already some practical studies were done to correlate 2D
informations to 3D structures:

(1) One can also notice the experimental study by Sand-
ers[2] on natural opals. The samples consist in silica spheres
of two sizes(0.36 and 0.21mm diamater) and they present
side by side ordered and disordered zones which differ by the
composition and the packing fraction, as shown by electron
microscopy of fracture surfaces(the fractures pass through
the spheres and so exhibit planar sections of the spheres).

(2) Sonnevilleet al. [3] have obtained a biliquid foam by
extraction of the continuous phase of an oil-in-water emul-
sion through centrifugation; observation of the foam by
freeze fracture electron microscopy shows that the oil drop-
lets have deformed into polyhedral cells.

As shown by that latter experiment, the studies of grain
assemblies and foams are not too far from each other. To

combine the two approaches, at least in numerical packings
of spheres, it is also possible to generate a froth from a
packing by performing the Voronoi(resp. Laguerre, or radi-
cal) tessellation[4] of the space in the monodisperse(resp.
polydisperse) case, most geometrical features of the grains
being analyzed together with the corresponding ones for the
related tessellation. The main difference between a natural
froth and a froth obtained by tessellation of a sphere packing
is due to steric exclusion: The smallest cell for a disk assem-
bly is the smallest grain of the packing. Such a study was
done in the monodisperse case[5] with numerical packings
of spheres—the only parameter being the packing fraction.
Besides checking the validity of global conservation laws, it
was possible to compare the polydisperse 2D system of sec-
tion disks to an ordinary random disk assembly with the
same packing fraction and the same size distribution. Both
behave very closely. Moreover, as the section disk distribu-
tion is naturally peaked in a small range of values, the radical
tessellation of the two assemblies verifies most statistical
properties of monodisperse random disk assemblies, both on
the topological and the metric levels.

But even if the structure of two-size mixtures of spheres
has also been studied, mostly on packings built numerically
(for example [6]), the detailed analysis of the correlation
between 3D information and 2D measurements is not yet
done completely. A lot of new tools, such as x-ray tomogra-
phy, MRI, and confocal microscope, can deliver some kinds
of 3D descriptions which can be analyzed also as a set of
consecutive 2D dimensional slices. To get some informations
from 2D images is not so easy without any a priori informa-
tion, as we can see in the comparison between the real pack-
ing and one 2D cut in Fig. 1.

The aim of this paper is to begin an analysis for two-size
mixtures of spheres generated numerically, similar to the one
for monodisperse packings[5]. The final aim is to get 3D
information for the initial packing from 2D statistical prop-
erties of the random cut to be able to do the same in the case
of actual assemblies. Of course, binary systems may behave
very differently from monodisperse systems, and polydis-
perse systems often interpolate between these two extreme
situations. Other parameters enter the discussion: The size
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ratio and the numerical fraction of each species. In Sec. II,
we recall general stereological relations and their application
to the special cases of convex polyhedra fillings and of
spheres assemblies. In Sec. III, we describe briefly the build-
ing process for our binary packings of spheres and for the
related Laguerre cell assemblies. In Secs. IV and V, we give
numerical results for the 2D random cuts and check the ste-
reological relations coined in Sec. II. In the last part of Sec.
V and in the conclusion, we discuss the method for going
upward from 2D to 3D statistics in actual situations.

II. STEREOLOGICAL RELATIONS

A. Generalities

The probability for a 3D objectX embedded in a vesselV
(a cube in our samples) to be sectioned whenV is sectioned
is [1]

HX/HV, s1d

whereHX andHV denote the tangent diameter(or orthogonal
projection length) of the object and of the vessel relatively to
the direction of the sectioning plane. When several sections
are performed with random distinct orientations,HX (resp.
HV) is the average projection length. For instance, if the ves-
sel V is a cube with edge lengthL, HV=L when the cuts are
done parallely to one of the sides of the cube andHV
=3L /2 when all orientations are equally allowed. If the ob-
ject X is a sphere of radiusR, HX=2R. For a polyhedron,HX
reads[1,7]

HX =
1

2p
o l isp − uid/2, s2d

where the sum runs on all edges of the polyhedron,l i is the
length of theith edge, andui is the inner angle of the dihe-
dron with edgei; in the case of a regular polyhedron withf
faces,n edges of lengthl per face and occurencel at each
vertex, it simplifies to

HX =
nfl

8p
cos−1fcossp/ld/sins2p/ndg, s3d

which in the case of tessellations(l=3 and n=nsfd=6
−12/f) reduces further to[1]

HX =
3sf − 2dl

4p
cos−1f1/2 sins2p/ndg. s4d

For a planar polygon, expression(2) becomes

HX = P/4, s5d

whereP is the perimeter of the polygon.
Stereological conservation laws exist[1], when going

from 3D to 2D cuts, linking the 3D objects in a volumeV to
their 2D sections on a surfaceA which may be rewritten as:

(1) Conservation of the packing fraction: The occupied
volume per unit volumeVV (or packing fractionw) is equal
to the occupied area per unit areaAA in the section(VV=AA
in classical notations),

(2) Conservation of the surface per unit volumeAV; more
preciselypAV=4PA, wherePA is the perimeter per unit area
in the section, and

(3) Conservation of the length per unit volume orPV
=2QA, whereQA is the number of traces in the section of the
lines with lengthPV per unit volume.

B. Case of assemblies of spheres

We start with a binary mixture ofN spheres in a vessel of
volume Vtotal with radii Ri, i =1,2 sR1,R2d, in numerical
proportionsni sn1+n2=1d. The packing fractionw is the frac-
tion of occupied volume

w =
4pN

3
fn1R1

3 + n2R2
3g/Vtotal, s6d

The sections are disordered polydisperse disk assemblies.
The numberNi

* of disks issued from spheres of speciesi in a

FIG. 1. (a) 3D binary mixture of spheres with 80% of small
spheres and a size ratio equal to 1.5.(b) 2D cut of this packing with
its radical tesellation, the gray disks correspond to the cuts of the
large spheres.
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section isNi
* =Nni 2Ri /HV whereHV is mean tangent diam-

eter of the vessel and 2Ri is the tangent diameter of the
spheres of typei. The total number of disks in the section is
N1

* +N2
* =Nsn1 2R1+n2 2R2d /HV and the disks issued from

spheres of speciesi are in proportionsni
*

ni
* = niRi/sn1R1 + n2R2d, s7d

i.e., the proportion in the cutsdoes notdepend on the pack-
ing fraction. The conservation laws are contained in the den-
sity distributionP*srd of sectional disk radii:

5P*srd =
n1

* r

R1
ÎR1

2 − r2
+

n2
* r

R2
ÎR2

2 − r2
, 0 , r , R1

P*srd =
n2

* r

R2
ÎR2

2 − r2
, R1 , r , R2.

s8d

Relation(8) is a simple generalization of the one[1] relative
to a monodisperse packing. Alternatively, the fractionN*srd
of disks with radius less thanr is

HN*srd = 1 −n1
*ÎR1

2 − r2/R1 − n2
*ÎR2

2 − r2/R2, 0 , r , R1

N*srd = 1 −n2
*ÎR2

2 − r2/R2, R1 , r , R2.

s9d

Note that repartition functionN*srd has a cusp atr =R1, with
an infinite slope on the left side, and a finite(positive) slope
on the right side

n2
* R1

R2

1

ÎR2
2 − R1

2
, s10d

which may be large ifn2
* (or n2) is large and/or the size ratio

close to 1.
The conservation relations(packing fraction and surface

per unit volume), which are more general, may be directly
checked by using distributionP*srd. Of course, these formu-
las are easily generalized to polydisperse systems and may
be also extended to packings of spheres with a continuous
radius distribution. Relations(7) and(8) are tested in Sec. IV.

C. Case of polyhedric tessellations

We consider the case of two-species mixtures of convex
polyhedric cells filling space, in numerical proportionni
sn1+n2=1d, like the one resulting of the tessellation of a
binary mixture of spheres. We restrict to the case where an
edge is common to three cells and a vertex to four cells
which is the generic case in tessellations[8]. The conserva-
tion laws may be rewritten differently and more precise re-
lations exist. The sections are convex polygons filling the
plane. For the 3D tessellation, the main information arises
from the distribution of neighboring cells. We shall use the
classical notations for the partial and total coordination num-
bers f i ,kflskfl=oni f id, the fractiontij of faces common to a
i−cell and aj−cell, the average numbermisfd (resp.msfd) of
faces of the cells neighbor of ai−cell (resp. undifferentiated
cell) with f faces, and average metric quantities, such as the
average cell volume, area, and perimeter per species

Vi ,Ai ,Pi, and globallykVl=oniVi and similarly forkAl and
kPl. We need also the average value of the perimeterPij of a
face si j d.

The 2D cut of the 3D tessellation is a tessellation of the
plane by convex polygons of 2 species. With obvious nota-
tions, the corresponding 2D quantities are:

(1) Numerical fraction ñi of cells generated by a 3D
i-cell,

(2) Coordination number, i.e., average number of neigh-
boring polygons,z̃i, with oñiz̃i =6 (Euler’s identity),

(3) Fraction of neighborssi j d, say t̃i j ,
(4) Average numberm̃isnd (resp. m̃snd) of edges of the

cells neighbor of a 2Di−cell (resp. undifferentiated cell)
with n edges, and

(5) metric average quantities,ãi, p̃i for the average area
and perimeter of cells of each species, andkãl, kp̃l for all
cells,…

From the conservation laws(Sec. II A), we derive some re-
lations for binary mixtures:

(1) The number of section polygonsÑi of speciesi is

Ñi =N niHi /HV, whereN is the number of polyedra in the
vessel with mean tangent diameterHV andHi is the average
tangent diameter of 3Di–cells. The total number of polygons

in the section isÑ=Nsn1H1+n2H2d /HV and the numerical
proportion of polygons of speciesi in the cut is

ñi = niHi /o niHi . s11d

(2) For each species,

Vi = Hiãi,

pAi = 4Hip̃i ,

Pi = 2z̃iHi , s12d

and for the average volume, area, and perimeter

kVl = kãlsn1H1 + n2H2d,

pkAl = 4kp̃lsn1H1 + n2H2d,

kPl = 12sn1H1 + n2H2d. s13d

The last relation is a simple check of the Euler’s identity
ñ1z̃1+ ñ2z̃2=6 for the 2D mosaics.

(3) Further information on the correlations between
neighbors exist. LetPij denote the average perimeter of a
common facesi j d between two cells of speciesi and j . If it is
sectioned, it yields a common edge to two 2D section cells
and the number of facessi j d to be sectioned is

FtijHij /HV = Ftij
Pij

4HV
= Ẽt̃i j , s14d

whereF=Nkfl /2 is the total number of faces,kfl the average
number of neighbours of a cell,Hij =Pij /4 the tangent diam-

eter for the facesi j d fsee Eq.s5dg and Ẽ=3Ñ the number of
edges in the section. Whence,

RANDOM CUTS IN BINARY MIXTURES OF SPHERES PHYSICAL REVIEW E70, 031112(2004)

031112-3



t̃i j = tij Pij /o tij Pij , s15d

or

t̃i j = kfl
tij Pij

24sn1H1 + n2H2d
, s16d

and

kfl = 24sn1H1 + n2H2d /o tij Pij . s17d

These formulas are easily extended to polydisperse assem-
blies of polyhedra. Relationss11d–s13d ands15d are tested in
subsection V C.

III. NUMERICAL METHODS AND PACKINGS

We first build our binary assembly of spheres, then the
related 3D-Laguerre(radical) tessellation and finally perform
a random planar cut of the tessellation.

A. Sphere assembly

We start with two sizes of spheres, with radiiRi, i =1,2
and R1,R2, in numerical proportionsni, n1+n2=1. Except
for specific purposes, we shall consider spheres with size
ratio k=R2/R1=1.5. The numerical fractionn1 of small
spheres runs from 0.10 to 0.95. We build disordered packings
of 16 000 spheres using several types of binary hard core
algorithms: Random sequential adsorption(RSA) [9], Powell
algorithm[10] (grains are placed successively under gravity),
collective algorithms(e.g., event-driven, Jodrey–Tory[11]),
which are generalizations of those in the monodisperse case
and are detailed in[12]. Let us recall that high packing frac-
tions are realized using Jodrey–Tory algorithm: For the size
ratios we have used, the maximal packing fractionwm
slightly depends onn1 but remains close to the maximum
value for disordered monodisperse sphere packings,wm
,0.64. The Powell algorithm generates a looser packing
sw,0.58–0.60d and RSA yields dilute assemblies(from 0 to
0.40 at most).

B. Three-dimensional tessellation

In the case of equal spheres, two grains are said to be
neighbors if their Voronoi cell have a common face and a
hierarchy in neighbors may be easily generated. The study of
the grain assembly is thus complemented with that of the
Voronoi tessellation, i.e., of a space filling foam made of
convex polyhedral cells, each cell containing one grain and
one only[8]. For binary—or more generally polydisperse—
systems, a correct generalization of the Voronoi tessellation
is the Laguerre(or radical) tessellation[4] where the bisect-
ing plane is replaced by the radical plane with the same
topological properties, same occurrence numbers, and one
cell containing one sphere and only one. We have now a
two-fold froth with two kinds of grains herein.

Note that the 3D Voronoi or radical tessellations are not
the most general froth because of the steric constraint. In the
monodisperse case, the cells are more regular than those gen-
erated for instance by a random Voronoi Poisson process

[8,13] and their regularity increases with the packing frac-
tion. It is not so simple in binary cases as the cells are al-
ready very differentiated at medium size ratiosk=1.5d; the
“large” cells are probably more regular than the “small”
ones.

C. Random cuts

Once the tessellation is built, we perform a series of at
least 40 random sections through each packing, so that the
statistical study of the 2D sections is carried out on about
25–30 000 polygonal cells.

Note that some cells are empty as the plane may cut the
cell butnot the sphere. In the samples of this paper(compact
assemblies), approximately 75% of the 2D cells are occu-
pied, with more success for the large ones(species 2) as the
3D cells are more regular and thus their faces are closer to
the inner sphere. This phenomenon is more accentuated
whenk=2. From Eq.(1), it is easy to check that the fraction
of occupied cells of speciesi is 2Ri /Hi and that the fraction
of full cells globally is 2sn1R1+n2R2d / sn1H1+n2H2d.

In Table I is plotted the fraction of cells withn sides
which are empty for both species. As expected, empty cells
have a small number of sidessnø8d; all three cells are
empty and nearly two-thirds of then=4 cells. The proportion
of empty cells for eachn is nearly the same for the two
species.

IV. ASSEMBLIES OF SPHERES

We checked Eqs.(7) and(9) at maximal packing fraction
swm,0.64d and any numerical fractionn1 (n1 running from

TABLE I. Fraction of empty cells withn sides for both species
(k=2, n1=0.5).

n Species 1 Species 2

3 1 1

4 0.613 0.593

5 0.207 0.239

6 0.044 0.045

7 0.005 0.007

8 0.000 0.001

FIG. 2. Plot ofn1
* vs the 3D numerical fraction of small grains

n1 for a size ratiok=1.5 at maximum packing fractionw,0.64;L:
Numerical values; the theoretical expression is given by the con-
tinuous line.
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0.10 to 0.95), then at fixed fractionsn1=n2=0.5d and increas-
ing packing fractionw.

In numerical assemblies, everything is known, i.e., the
size ratiok, the numerical fraction of small spheresn1 are
perfectly determined. Then, the resulting 2D numerical frac-
tionsni

* and repartition functionN*srd are easily compared to
the theoretical expressions Eqs.(7) and(9). For example, we
give in Fig. 2 the variations ofn1

* with n1 for k=1.5 at w
,0.64 and in Fig. 3n1

* versusw for n1=0.5 andk=1.5. The
agreement is very good. In particular, as expected,n1

* does
not depend on the packing fraction.

It is much more interesting to consider that we have an
actual sample and that the information only arises from the
cuts which is the actual situation. We can determine experi-
mentally the 2D repartition functionN*srd. The presence of a
unique cusp at some value ofr is characteristic of a binary
system. We can then try to fitN*srd by the function given by
Eq. (9). This has been done using the Levenberg–Marquardt
algorithm with parametersn1, R1, andR2. As seen in Fig. 4,
the fit is very good. It is still better with a larger size ratio
sk=2d as the 2 species are drastically separated. It remains
good when the size ratio is smaller, even whenn1 is small
where the determination is more difficult, as seen in Fig. 5
for k=1.2 andn1=0.2.

We can compare the final values of the parameters given
by the fit algorithm and the numerical values characterizing
the 3D packing. The agreement is very good(Table II).

The same study was performed in the case of anordered
binary mixture, when the two species are on two shifted
simple cubic lattices. Then,n1=n2=0.5 and the smallest pos-

sible size ratio isk=sÎ3+1d /2. We have chosen againk
=1.5 and w=0.64 (the densest packing fraction isw
=18p /81=0.67 873. . .). Relations(6) and(10) still hold. The
same would probably be true for a segregated packing(large
and small grains completely separated); this means that so
far it is impossible to get information relative to the posi-
tional correlations in the packing with only these general
quantities and that a finer analysis is needed. We shall go
back to this point in the discussion.

In an experimental study, it would probably be difficult to
have a statistics as good as in the numerical case. The
samples may be small and only a reduced number of cuts is
possible. It is then interesting to study size effects with con-
ditions close to the ones used experimentally in order to have
an idea of the reliabiliy of the results of a real experiment.
We have then built numerically a large packing of 16 000
spheres withn1=0.5,k=1.5, andw=0.64. Inside the packing
we have made smaller cubic samples of different sizes(10,
12, 16 and 20) measured as the cubic root of the number of
spheres in the samples. Four(nonoverlapping) samples were
considered for sizes 10 and 12, two for size 16 and one for
size 20. Through each sample, we have made 40 cuts parallel
to its sides, choosing randomly one of the three directions
and the position of each cut. Table III gives the statistical
results we have obtained. The largest difference between the
mean value of the parameters of the fit and the numerical
value is less than 1% forR1 andR2 and about 2% forn1. As
expected, the mean square deviations decreases when the
size of the sample increases. For all sizes, it is small forR1
(,3% at size 10) and even smaller forR2: the radii are
obtained with a good precision from a few cuts. It remains
large forn1 and a large number of cuts is necessary to deter-
mine n1 precisely.

TABLE II. Comparison of the parameters given by the fit with
the numerical values of the 3D packing.

k=1.5 k=1.2

Fit Num. Fit Num.

n1 0.2550 0.2533 0.2088 0.2048

R1 0.2730 0.2730 0.3264 0.3287

R2 0.4095 0.4095 0.3944 0.3944

FIG. 3. Plot ofn1
* versus the packing fractionw when n1=0.5

and size ratio isk=1.5.L: Numerical values, •: Theoretical values.
The theoretical values are not all the same because the different
building algorithms do not give exactly the same composition and
radius ratio.

FIG. 4. Plot of N*srd for a size ratiok=1.5 andn1=0.25,w
=0.64; numerical valuessLd are fitted by the theoretical
expression.

FIG. 5. Fit of the experimental values ofN*srd to the theoretical
expression in a “bad” case: Small size ratiok=1.2 and smalln1

=0.20.
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V. RESULTS FOR THE CUT OF THE TESSELLATION

As explained in the preceding section, in numerical en-
sembles everything is known. So, all 3D and 2D quantities
may be reached. We first recall briefly the 3D behavior of the
Laguerre tessellation(see[12]), then give the results for the
2D cuts and check the stereological relations of Sec. II.

Except when explicitly noticed, the 3D and 2D tessella-
tions have been generated from sphere assemblies for a size
ratio k=1.5 and maximal packing fractionswm,0.64d.

A. Analysis of the three-dimensional cell assembly

Such an analysis was already performed in[12]. We
briefly recall main statistical properties.

(1) For k=1.5, the 3D cells of the two species are clearly
different and the distribution functions for the fractionpisfd
of f-faced cells of speciesi and for the metric quantitiesVi,
Ai, and Pi are clearly separated, all distributions presenting
two separated peaks and a very weak overlap.

(2) Both coordination numbersf i are increasing functions
of n1. At the two limiting situationsn1=0 sresp.n2=0d, f2 .
sresp.f1d=kfl,13.9

(3) The total number of facesfmisfd of the neighbors of a
f-faced cell of speciesi is a linear function off (Aboav’s law
[14]). It is not true for a global analysis of the packing. This
is better put into evidence for a larger size ratiok=2 (Fig. 6).

(4) The average volume, area and perimeterVisfd, Aisfd,
andPisfd for speciesi and at givenf are not linear functions
of f, contrary to the monodisperse case where Lewis and
Desch laws hold[15,16].

B. Analysis of the two-dimensional cell assembly

In the following, we shall consider the 2D mosaics result-
ing from a planar random section independently of the un-
derlying sphere packing which may just be considered as an
intermediate for building a 3D froth. It would not be possible
in actual sphere assemblies and we shall go back to this point
in the conclusion.

We go now to the corresponding 2D quantities and check
similarities and differences with the 3D case.

(1) The proportionñ1 of sections related to species 1 is an
increasing function ofn1 like ni

* and alwaysn1
* , ñ1.

(2) The total distribution functionpsnd for the numbern
of sides of a cell has only one peak(Fig. 7); the same is true
for the distribution of the area of the cells.

(3) The partial coordination numbersz̃i are increasing
functions of n1 (Fig. 8). They satisfy the Euler’s relation
ñ1z̃1+ ñ2z̃2=6. At the limit n1=0, z̃2= z̃=6 and conversely.

(4) The fractionst̃i j of common edgessi j d have been plot-
ted on Fig. 9 as a function ofn1. The behavior is qualitatively
the same as for thetij in the 3D tessellation.

(5) Aboav’s empiric lawfor each speciesholds and also
for the global analysis of the packing(Fig. 10):

nm̃isnd = s6 − lidn + gi . s18d

(6) We have measured all metric quantities such as the
area and perimeter of each cell, the average areaãi and pe-
rimeterp̃i per species and we have analyzed their distribution
function. Contrary to the 3D case, the two peaks are not
separated. As to the areasãi (resp. perimeterp̃i) we have
checked their dependence on the number of sidesn of the

TABLE III. Size effects for cuts parallel to the sides of the cubic
sample. Numerical values:R1num=0.2441, R2num=0.3670, and
n1num=0.4996.

Sample size→ 10 12 16 20

R1fit 0.2451 0.2441 0.2439 0.2442

R2fit 0.3650 0.3653 0.3661 0.3663

n1fit 0.4893 0.5101 0.4968 0.4951

sR1
0.0076 0.0042 0.0036 0.0002

sR2
0.0029 0.0022 0.0015 0.0006

sn1
0.093 0.086 0.053 0.040

FIG. 6. Aboav’s law holds for the two species separately, but not
for the global analysis of the packing(k=2, n1=0.75).

FIG. 7. Distributionpsnd of the number of sides of a cell(k
=1.5, full circlesn1=0.25, empty circlesn1=0.80).

FIG. 8. Variation of the partial coordination numbersz̃i with n1

sk=1.5d.
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section cells…Neither Desh[16] nor Lewis [15] laws hold
(Fig. 11).

C. Check of the stereological relations

We have first checked on our numerical assemblies the
stereological relations(11)–(15) derived in Sec. II C. The
agreement is pretty good even whenn1 or n2 are small and
the statistics poor in one species. As an example, in Table IV,
the theoretical and numerical values of thet̃i j are compared.

However, going backward from 2D to 3D with the only
2D information is not straightforward. First, pure individual
average quantities require the knowledge of the tangent di-
ameterHi of the 3D i-cells: from the numberN of 3D cells

and the average numberÑ of cells in a section, it is easy to
know the global average tangent diametern1H1+n2H2 and
from ñi to get back the average tangent diameter of each
species, providedni is known. If not, the problem is harder
and only niHi, then 3D quantities such asniVi, niAi,
niPi…can be reached. Note that, in the case of a binary
sphere packing, it is possible to getni andRi separately and
then all 3D individual average quantities. The 3D coordina-
tion numberskfl, f i require the knowledge of the average
perimeterskPl, kPil of the 3D cells which may be derived
from the conservation laws(12). However, correlations are
harder to get, as thetij require the knowledge of the indi-
vidual perimetersPij .

D. Open problems

Let us go now to an actual situation and more precisely let
us consideran actual packingmodeled by(possibly polydis-
perse) spheres.

In that case, the 3D tessellation is not known, the only
information available is the set of planar disks. As seen in
Sec. IV, not much may be done directly with the set of sec-
tional disks. However, another partition of the plane may be
performed, from the Laguerre tessellation in the section(and
not from the cut of the tessellation) as was already done for
2D binary and polydisperse assemblies of disks[17]: there
are less cells(about 25% less in our compact assemblies) but
larger cells. Their edges often coincide with the edges of the
cut of the tessellation as, when the section disk exists, the
radical axis is the trace of the radical plane in the section; on
the other hand, non-neighboring spheres may have neighbor-
ing disks in the section and this will be the main problem
when going back from 2D to 3D.

We denote by an asterisk the quantities related to the tes-
sellation of the section. Qualitatively, the two tessellations do
not look very different at first sight. For a size ratiok=1.5,
topological quantitieszi

* andz̃i on one hand andtij
* and t̃i j on

the other are rather close; numerical differences begin to be
noticeable whenk,2. As for the cut of the tessellation
Aboav’s law holds for each species separately(but not glo-
bally); Lewis and Desch empirical laws do not.

However, in spite of some common features, the two tes-
sellations are not simply numerically related and it is not
possible to derive properties of the cut of the tessellation
(unknown on experimental samples) from the properties of
the tessellation of the cut. Moreover, the main differences
concern the distribution functions which are narrower in the
tessellation of the cut as can be seen, e.g., on the dispersion

TABLE IV. Comparison of the stereological formulation values
with the numerical values for the correlation functionst̃i j .

t̃11 t̃12 t̃22

n1 theory stereo. theory stereo. theory stereo.

0.10 0.044 0.044 0.1268 0.1256 0.8688 0.8700

0.25 0.0293 0.0291 0.2938 0.2886 0.6769 0.6823

0.40 0.0785 0.0777 0.4224 0.4197 0.4991 0.5026

0.50 0.1396 0.1396 0.4844 0.4844 0.3760 0.3760

0.70 0.3292 0.3285 0.4981 0.4950 0.1727 0.1765

0.80 0.4830 0.4777 0.4295 0.4299 0.0875 0.0923

0.90 0.6978 0.6976 0.2785 0.2781 0.0238 0.0243

0.95 0.8390 0.8395 0.1548 0.1543 0.062 0.0063

FIG. 9. Variation of thet̃i j with n1 sk=1.5d.

FIG. 10. Aboav’s law holds for the two species and for the
undifferentiated case(k=2, n1=0.75).

FIG. 11. Variation of the areaãsnd of the cells with n (R1

=0.296,k=1.5, n1=0.5).
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of the number of sides of the cells in both cases(m2
* andm̃2)

(Fig. 12). As to metric quantities, by construction, areas and
perimeters are greater in the tessellation of the cut,[a1

* anda2
*

are, respectively, 1.4 and 1.25 larger thanã1 andã2 (Fig. 13)]
but overall, the distributions again are more peaked: The
dispersion of partial areasai

* is smaller nearly by a factor 2
for k=1.5 in the tessellation of the cut.

VI. CONCLUSION

We have studied binary mixtures of spheres together with
the froth generated by their related Laguerre-Voronoi tessel-
lation. The cut of the tessellation is in turn a disordered 2D
tessellation(mosaic) made of two species of convex cells.
We have derived the main stereological relations between the
3D tessellation and its 2D cut and checked their accuracy on
numerical assemblies. The agreement is very good.

However, in actual samples, going from 2D to 3D infor-
mation as to the shape or relative arrangement of the grains
is not so easy. Already for disordered sphere assemblies, only
the numerical fraction and radii of each species may be eas-
ily reached. For convex polyhedral assemblies filling space,
getting individual average quantities implies the knowledge
of the tangent diameterHi, which is possible, but the deter-
mination of correlated quantities depends on the knowledge
of the 3D perimetersPij of the faces of the cells which is a
more difficult problem.

In the extension to the studies of granular materials, a
possibility could be the construction of the tessellation in the
cut, which can be performed on actual samples, although the
correspondence with the cut of the tessellation is only partial.
One may hope then to reconstruct the 3D tessellation and
thus study the actual 3D geometrical organization. We are
presently beginning this study.
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FIG. 12. Dispersion of the number of sides of the cells in the cut
of the tessellationsm̃2d and in the tessellation of the cutsm2

*d sk
=1.5d.

FIG. 13. Average areas of the two types of cells in the cut of the
tessellation(ã1 andã2) and in the tessellation of the cut(a1

* anda2
*)

sk=1.5d.
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